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Using the MCASE program, a procedure to analyze the diversity of the large amount of available
HIV-1 antiviral data was proposed. A subset of 1 819 chemicals was logically selected from
the original 14 156 chemicals tested by NCI. This subset of chemicals was shown to contain
most of the structural and the functional information of the original database. A full analysis
of the 1 819 chemicals by the MCASE program produced a correlation between chemical
structures and HIV antiviral activity. In our model, 74 fragments were identified as being
responsible for all the chemical’s HIV antiviral activity. These fragments may be related to
different inhibiting mechanisms, some known and some probably still unknown. The expert
system resulting from this analysis can be used to predict the activity of new chemicals and to
design new agents that can target multiple enzymes. This was shown to be the case by using
the model to predict the activity of 10 diverse chemicals whose activities were not known at
the time of model development. Of these, 8 were predicted in agreement with experimental
observations. As far as we can tell, this is probably the first project ever to attempt to create
a quantitative model of activity for such a massive database of diverse chemicals.

Introduction

AIDS, the acquired immunodeficiency syndrome, is
believed to be caused by a virus called “human immu-
nodeficiency virus”, or HIV. Billions of dollars have been
spent worldwide to find an effective treatment for HIV
infection. One of these projects is the AIDS Antiviral
Screen, led by the Antiviral Evaluations Branch of the
National Cancer Institute’s (NCI’s) Developmental Thera-
peutics Program. In this project thousands of chem-
icals were tested for their capability to inhibit the HIV
virus.

QSAR refers to the statistical analysis of potential
relationships between chemical structure and biological
activity. QSAR can be viewed as a technique attempting
to summarize chemical and biological information in a
form that allows one to generate and test hypotheses
to understand interactions between molecules. Indeed,
when it is possible to elucidate quantitative relation-
ships between chemical structure and biological activity,
these relationships have been shown to be useful in
describing possible mechanisms of interaction and
predicting the activity of new structures with better
properties than those used to formulate the original
QSAR. Unfortunately, the results of such an analysis
only serve to characterize trends and properties within
the bounds of the learning set of data. Therefore, the
larger the learning set, the better the QSAR’s predicting
ability. Recent advances in technology have made it
possible to obtain and analyze large amounts of bio-
activity data:

1. The development of automated synthesis capabili-
ties along with the formulation of the combinatorial

chemistry approach has enabled the rapid synthesis of
large numbers of molecules.

2. The automation of in vitro bioassays affords high-
throughput screening systems capable of generating
massive amounts of data in a relatively short period of
time.

3. The ever-expanding power of computers makes it
possible to calculate hundreds or even thousands of
descriptors to characterize chemical structures and to
correlate these with specific biological or chemical
properties.

Although such advances in technology provide more
opportunities for QSAR practitioners, how to handle,
summarize, and effectively use the huge amount of
information generated by the high-throughput screening
methods also brought a major challenge upon compu-
tational chemists. Molecular modeling and QSAR stud-
ies of anti-HIV-1 virus have been performed by a
number of groups independently worldwide. However,
all these approaches are based on a single inhibiting
mechanism and a small number of congeneric molecules
(less than 100) (Table 1).

In this paper, we use a somewhat different methodol-
ogy capable of analyzing the activity of large sets of
diverse molecules. The MCASE program is a quantita-
tive structure-activity relational expert system (QSAR-
ES) capable of learning automatically from data and
organizing that knowledge into an expert system. In the
course of this study, a new diversity analysis procedure
was invented and used to reduce the data to a more
manageable level. (The MCASE program is available
from MULTICASE Inc., 25825 Science Park, Suite 100,
Beachwood, OH 44122. URL address: http://www.mul-
ticase.com.)* Corresponding author.
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The Database
The HIV antiviral data were obtained from the NCI archive

(http://epnws1.ncifcrf.gov:2345/dis3d/aids_screen/aidspub.
html). The AIDS Antiviral Screen methodology was developed
by the NCI in the hope of discovering new compounds capable
of inhibiting the HIV virus more effectively. The screen uses
a soluble formazan assay to measure protection of human CEM
cells from HIV-1 infection.28 The maximum culture concentra-
tion for all the compounds is 0.25%, which had no apparent
direct toxic effects on the cell lines used or the HIV-1 infection.

The results of the screening tests are evaluated and placed
in one of three categories: confirmed active (CA), confirmed
moderately active (CM), or confirmed inactive (CI). CA, CM,
and CI are defined as follows: compounds that are able to
provide at least 50% protection to the CEM cells are retested.
Compounds that provide at least 50% protection on retest are
listed as “moderately active”. Compounds that reproducibly
provide 100% protection are listed as “confirmed active”.
Compounds that do not meet these criteria are listed as
“confirmed inactive” (note that the inability to provide protec-
tion could be due to toxicity).

The released AIDS screening results contain 24 110 com-
pounds, of which 230 are confirmed active, 444 are confirmed
moderately active, and all others are confirmed inactive.
Because the current version of MCASE lacks the ability to
handle chemicals containing metal atoms and some other
uncommon inorganic atoms such as B, Si, Se, Te, etc., in our
analysis, all the chemicals containing such atoms in the
original database were removed. After this, there were 14 156
chemicals left, of which 175 are confirmed active, 318 are
confirmed moderately active, and all others are confirmed
inactive.

The MCASE Program
The detailed algorithm used in the MCASE program was

described in a couple of papers previously published by
Klopman.29,30 Basically, after the user inputs a set of chemical
structures and their respective experimentally determined
biological activities, the program is capable of identifying
substructural descriptors (fragments and/or distances) that
may be associated with the biological activity of the chemicals.
The molecular fragments are generated as a result of breaking
down each individual chemical structure into its constituent
parts. The fragments normally are linearly connected atoms
including, if necessary, a side chain. They can be as small as
two heavy atoms (non-hydrogen) and can be as large as
required. Each fragment is “labeled” with an activity index
that is associated with its parent compound. The distance
descriptors are two-dimensional distances between atoms
within a chemical structure.

MCASE will find descriptors that have the highest prob-
ability of being related to the observed biological activity
(biophore) and/or inactivity (biophobe). The chemicals will then
be divided into different groups according to the biophores they
contain. After this, MCASE attempts to derive a “local” QSAR
within each group of compounds in order to identify molecular

features that control the degree of activity. These features,
termed modulators, are selected from the pool of molecular
fragments, distance descriptors, calculated electronic indices
(molecular orbital energies, charge densities), and calculated
transport parameters (octanol/water partition coefficient, wa-
ter solubility). In this way, the program will generate the best
correlation between the chemical structures and their observed
biological activities.

Database Processing
Because the MCASE program selects substructural

descriptors by decomposing the learning set of chemical
structures into fragments, when the total number of
chemicals of the learning set is large, millions of
fragments may be generated. The memory required and
CPU time needed to manage such a vast array of data
are beyond the current capability of most computers.
Therefore, we propose a new method to process the
information generated by such a large learning set.

The object of the analysis is to select the smallest and
most representative subset of chemicals from the origi-
nal learning set. This subset must possess all or most
of the information contained in the original database.
When applied to predict the activity of new chemicals,
the subset must show similar predicting ability as would
have been obtained using the full database. The para-
digm to guide the selection of the subset is to minimize
redundancies. In a large database, there are usually
many combinatorial redundant chemicals. Such combi-
natorial redundant chemicals have different structures,
but when decomposed into fragments, they possess
similar substructures. Therefore, it is possible to select
a subset of diverse chemicals from the full learning set
that still contains all of the useful information within
the boundary of the description of the substructures.

Here, we propose two new terms for diversity: struc-
tural diversity and functional diversity. The structural
diversity refers to chemicals containing the maximum
number of different substructures, and the functional
diversity refers to chemicals containing the maximum
amount of activity information. Hence, the optimal
subset of the large database should have both maximum
structural diversity and functional diversity.

Structural Diversity Selection. The following pro-
cedure (Figure 1) was used to select the subset of
chemicals that contain all the substructural information
of the full database.

Table 1. Summary of Computational Approaches to HIV
Antiviral Activity

inhibiting methodology refs

protease traditional QSAR 1, 2
molecular modeling

pharmacophore searching
3-7

3D QSAR 8, 9
reverse transcriptase traditional QSAR 10, 11

3D QSAR 12-15
molecular modeling

pharmacophore searching
16-17

integrase traditional QSAR 18
molecular modeling

pharmacophore searching
5, 19-24

3D QSAR 25
replication 3D QSAR 26, 27

Figure 1. Database processing algorithm.
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The first step of the preprocessing consisted in divid-
ing the original database into 15 parts. The first part
contains all the active chemicals (493, both confirmed
active and moderately active) and 100 inactive chemi-
cals randomly selected from the original database.
Therefore, the first part contains 593 chemicals. Each
of the other parts contains 1 000 randomly selected
inactive chemicals (except for the last part, made up of
the remaining chemicals).

We use the first part of chemicals as a learning set
to test the second part. The output of MCASE will
indicate which chemicals of the test set (second part)
contain fragments unknown to the learning set (first
part). For the purpose of this study, MCASE will report
an unknown structural group when it encounters a
sequence of two or three “heavy” atoms that have not
been seen in the learning set. A “heavy” atom consists
of an atom other than a hydrogen atom, with hydrogen
atoms and double-bonded oxygen or sulfur atoms at-
tached. Examples of “heavy atom” sequences of sizes 2
and 3 are -CH2-OH; -NH-CO-OH; -O-CS-CHd.
The following is an example of output (biophores refer
to fragments believed to be responsible for activity):

From this kind of output, we can identify the chemi-
cals that contain fragments unknown to the learning
set. Some of the tested chemicals contain several
unknown fragments, while others only contain one. It
is therefore possible to select the minimum number of
chemicals that contain all the unknown fragments of
the test set. The chemicals containing the best sample
of unknown fragment information are selected and
added to the learning set (first part). This new learning
set now contains all the fragment information existing
in both part one and part two chemicals. We then use
the updated part one learning set to test the third part
and continue until the structural diversity of all parts
are accounted for.

The final learning set, obtained after executing the
above steps, contained 1 048 chemicals. When this new
learning set is used to test the original 14 156 chemicals,
no more unknown fragments are found. Hence, we can
declare that the new learning set of 1 048 chemicals
contains all the substructural diversity information of
the original database.

Functional Diversity Selection. The learning set
obtained from the structural diversity selection only
contains the substructural information of the original
database. As mentioned before, the new learning set
must also possess the same predicting ability as the full
database. Therefore, we also need to do a functional
diversity selection from the original database so as to
include all the activity information.

The functional diversity selection can be performed
in the same fashion as the structural diversity selection
(Figure 1). The chemicals not included in the learning
set obtained above (14 156 - 1 048 ) 13 108) are

randomly divided into 13 parts. All of these chemicals
are inactive, because all the active chemicals had been
made part of the learning set in the structural diversity
selection step. Using this learning set, we test the first
part of the remaining chemicals. MCASE will use its
knowledge to predict the activity of the molecules of this
part.

When this is done, we find that some of the inactive
chemicals of the test set are predicted inactive because
they do not contain any biophore, but some of them are
erroneously predicted active because they contain a
substructure deemed relevant by the learning set. It is
therefore necessary to evaluate the inactive chemicals
incorrectly predicted active and identify the biophores
that were responsible for the erroneous conclusions.

For example, we find in one case that five experimen-
tally inactive molecules contain the substructure that
was selected to explain the activity of two molecules of
the learning set. Thus even though both of the chemicals
that contain this substructure are active in the learning
set, there are five chemicals in the test set that contain
it but are inactive. Therefore, it is clear that the
statistical basis for declaring this substructure to be a
biophore is flawed, and it will be necessary to add one
or two of the inactive chemicals from the test set into
the learning set in order to inform the program of this
fact. When this is done, then this substructure will no
longer be selected as a biophore and a better prediction
will be obtained. We analyzed all results in this fashion
and added chemicals that were predicted incorrectly
from the test set to the learning set. The number of
chemicals to be added for an ineligible biophore was
somewhat arbitrarily set to be equal to the number of
chemicals in the learning set containing such a biophore.
In this way, we can continuously update the learning
set so that better predictions will be produced. While
the empiricism of this procedure may have an effect on
the final model, we find that small modifications do not
generally affect the results in any significant way.

We can now proceed to use the new learning set to
test the next part of chemicals and, using the same
process, continue to improve the quality of the learning
set. These steps are repeated, until all parts of chemicals
have been processed.

After the functional diversity selection, we obtained
an expanded learning set that contained 1 819 chemi-
cals. We postulate that this learning set contains most
of the structural and activity information of the original
database.

Validation Experiments. Two steps are required to
validate the model. One is to make sure that it contains
all the structural and activity information of the original
database. The second is to make sure that it provides
good predictivity.

Structural and Activity Validation. In this valida-
tion, we use the model based on the final learning set
of 1 819 chemicals to test all the chemicals of the
original database (14 156 chemicals). The MCASE re-
sults are summarized in Table 2.

From this table, we can see that with the reduced
learning set, the program was able to identify 100% of
the experimentally active compounds and 96.8% of the
experimentally inactive compounds. Furthermore, there
are no unknown fragments identified during the test.
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Therefore, we can declare that the reduced learning set
contains all the structural information and almost all
of the activity information of the original large database.

The erroneous results for the 438 inactive compounds
predicted to be active is probably inherent to the
methodology. For example, it may happen that during
our functional diversity selection we find that 50 active
chemicals of the learning set contain a given biophore
but 10 inactive chemicals of the test sets also contain
it. In such a case, none of the inactive compounds would
be forced into the learning set because they will not
affect significantly the statistics leading to the selection
of this biophore.

Predictivity Validation. The object of this valida-
tion is to make sure that models created from a subset
of molecules are capable of predicting the activity of the
chemicals left out of the learning set. For this purpose,
we randomly separated the 1 819 compounds into two
subsets. One contained 10% of the chemicals (I/M/A )
129/0/46) and the other 90% of the chemicals (I/M/A )
1197/0/447). The large subset was then used as the
learning set for the construction of a new model. It is
to be noted that by doing this, we forego the benefits of
the diversity analysis since 10% of desirable chemicals
have been left out of the design of this “diminished”
model. These 10%, i.e., 175 molecules, were then
submitted as a test set to the “diminished” model. The
results are shown in Table 3.

We can see that the model predicted 32 of the 46
active chemicals correctly (70%), while 112 of the 129
inactive chemicals were correctly (87%) identified. The
total prediction rate is 82% (144/175). We have repeated
this experiment two more times and found the total
prediction rates to be 80% and 82%, respectively.

Considering the highly compact and diverse nature
of our database, we believe that the results of the
prediction are highly acceptable. Indeed, the exercise
is particularly harsh because by removing 10% of the
compounds, we basically voided our procedure leading
to optimal structural and functional diversity.

Results and Discussion
Biophore and Biophobe. Using the reduced but

optimized learning set of 1 819 compounds, MCASE
identified 78 different biophores for HIV antiviral
activity. The most statistically significant biophores are
listed in Table 4.

New molecules containing any of these biophores will
have a high probability of being active. Furthermore,
combining biophores may help design molecules that
can inhibit HIV virus via several mechanisms. However,
in general, the program was only able to generate a
semiquantitative assessment of the importance of the

biophores and modulators because the inputted data did
not provide enough detailed information to create truly
quantitative structure-activity relationships.

From Table 4, we can see that the most significant
biophore is a complex functionality encompassing much
of the structure of 3′-azido-3′-deoxythymidine (AZT;
Figure 2). Azido compounds are widely believed to be
capable of inhibiting HIV replication. Indeed, AZT has
been the anti-HIV-1 drug of choice for some time, and
many azido compounds are active as well. However,
because these compounds are very strong electrophilic
agents, high toxic side effects have limited their
usefulness.31-36 There are no modulators associated
with this biophore, as all the compounds that contain
this fragment are very active. This probably also reflects
the fact that relatively little diversity exists in all these
molecules, and therefore little information is available
about the modulating effect of the structures to which
it is attached.

Biophore number 2 is a thioamide (or amide) of an
aromatic aniline derivative. All 50 chemicals that
contain such a biophore are very active, and therefore,
there are no modulators associated with this biophore
either.

It is interesting to note that this biophore contains
an element of biophore 1, namely a conjugated amide
group. This may indicate that the molecules that contain

Table 2. Test Results of the Full Database with MCASE
Based on the Reduced Learning Set

experimental active experimental inactive

predicted active 493 438
predicted inactive 0 13225

Table 3. Predicted Results for “Unknown” Chemicals

experimental active experimental inactive

predicted active 32 17
predicted inactive 14 112

Table 4. Most Significant Biophores for HIV Antiviral Activity

chemical
no. biophores total I/M/A

average
activity

1 52 0/0/52 64.0

2 50 0/0/50 60.0

3 23 0/0/23 51.0

4 40 2/0/38 56.0

5 23 2/0/21 37.0

Figure 2. Structure of 3′-azido-3′-deoxythymidine.
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this biophore may act, at least partially, by a similar
mechanism as that followed by the azido molecules.

Biophore number 3 is a hydrogen bond acceptor
connected to two hydrophobic benzene rings. One of the
most important modulators for this biophore is the
coefficient of the atomic pΠ orbital of the oxygen atom
in the highest occupied molecular orbital (HOMO) of the
molecules (eq 1):

where S1 is the presence of a tertiary methylamine
(CH3-N), S2 is the presence of a polycyclic aromatic
group, and S3 is the coefficient of the atomic orbital of
the oxygen in the HOMO. This coefficient determines
the ability of the oxygen atom to form hydrogen bonds
with a donor. Hydrogen bond capability will help the
molecule bind to the macromolecule, which we suppose

to be the HIV-1 integrase. Indeed all the active chemi-
cals designed from the integrase pharmacophore contain
this biophore.22 There are 23 chemicals in our learning
set that contain biophore 3, all of them active.

Biophore number 4 is a halogen-substituted aliphatic
fragment. There are 40 chemicals containing such a
biophore. Two of them are inactive, and 38 are active.
While we still do not know the exact mechanism
associated with this and most subsequent biophores,
these fragments significantly contribute to the observed
activities and are very probably the pharmacophores for
unknown mechanisms of activity.

Biophore number 5 again contains the amide of an
aniline (see biophores 1 and 2) with the additional
proviso that the amide itself is now aromatic as well.
The square of the logarithm of the partition coefficient,
(log P)2, was identified as the most significant modula-
tor. The overall QSAR found to describe the activity of
the molecules containing this biophore is as follows (eq
2):

where S1 is the presence of O-CH, S2 is the presence
of SO2-NH-CH2, and S3 is the square of the log of the
octanol/water partition coefficient.

The fact that, in some cases, the HIV antiviral activity
depends on the agent’s ability to partition into the lipid

Figure 3. Inactive compounds that contain biophore 3.

activity ) 35.3 + 28.6S1 + 29.0S2 + 58.7S3 (1)

Figure 4. Ten chemicals used to test the MCASE model.

activity ) 29.1 + 35.0S1 - 20.0S2 + 0.6S3 (2)
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domain of HIV-1 protease was noted previously.6 This
dependence is reinforced by the observation that SO2-
NH-CH2

-, which is strongly polar and hydrophilic, is
identified as a biophobe (fragment that inhibits activa-
tion) by MCASE. In fact, both of the inactive chemicals
that contain biophore 5 also possess the SO2-NH-CH2

-

group (Figure 3), while none of the active chemicals
contain this group. Overall, -SO2-NH-CH2- appears
in nine molecules, all inactive although some of them
also contain a biophore.

Predicting the Activity of Unknown Compounds.
Ten compounds (Figure 4) from various sources (see
references in Table 5) were selected for further testing
of our model. None of the compounds existed in our
learning set. Because the activity of these compounds
was tested under different experimental conditions than
those used by NCI, it is impossible for us to predict the
exact IC50 value. Therefore, these chemicals were simply
categorized as active or inactive according to the original
experimental results. The test results and experimental
observation of the activities of these 10 chemicals are
listed in Table 5.

From Table 5 and in line with the results obtained
above, MCASE predicts 5 of the 7 experimentally active
compounds to be active. All 3 experimentally inactive
compounds were correctly predicted to be inactive.
Overall, we believe that this is a remarkable result (8
out of 10 molecules were predicted correctly), consider-
ing the high diversity of the structures of the tested
compounds. Nevertheless, this is only a very small
sample of chemicals, and it would be dangerous to
extrapolate the results and claim 80% predictivity
without further tests.

Conclusions
In this paper, using the MCASE program, we have

successfully extracted a diverse subset of compounds
from the large NCI HIV-1 antiviral database of 14 156
compounds. This subset of 1 819 compounds was shown
to cover both the structural and activity information of
the full database.

Our MCASE study shows that certain structure-
activity relationships exist among the HIV-1 antiviral
agents. Several substructural features believed to ac-
tivate or deactivate HIV-1 antiviral activity have been
identified. Furthermore, we found that log P and the
HOMO coefficient of hydrogen bond acceptors are
important factors for the activity of some biophores.
While all the biophores are seen to lead to HIV-1
antiviral activity, we believe that they may be involved
in different mechanisms, like replication inhibition,
protease inhibition, integrase inhibition, and reverse

transcriptase inhibition. With the help of the resulting
model, we have tested 10 highly diverse chemicals that
came from different sources, the overall accuracy of our
prediction being 80%. This result provides a first glance
at the possible predictivity of our methodology.

While there are a number of models proposed for HIV
antiviral activity, all of them are based on a limited
number of chemicals and work only for a single mech-
anism. Therefore, the results may lack generality. The
diversity analysis technique we proposed here has made
it possible to analyze very large amounts of high-
throughput screening data, which is impossible to do
by any traditional method. As far as we can tell, this is
probably the first project ever to attempt to create a
quantitative model of activity for such a massive
database.

The biophores obtained from the MCASE analysis
may not be as straightforward as those pharmacophores
obtained from CoMFA and other molecular modeling
packages, but they provide a better explanation of the
large amount of screening data for which the exact
mechanism of action is unknown. Furthermore, we
believe that the biophores obtained from the MCASE
analysis provide a good starting point for the process of
pharmacophore search. Indeed, both CoMFA and all
other molecular modeling packages need to align and
superimpose molecules. This is impossible for diverse
data unless a procedure such as MCASE is used to
subdivide the database into logical subsets.
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